
Integration of Online Learning into HTN Planning for Robotic Tasks

Stéphane Magnenat
Autonomous Systems Lab - ETH Zürich

stephane at magnenat dot net

Jean-Cédric Chappelier
LIA - EPFL

jean-cedric.chappelier@epfl.ch

Francesco Mondada
LSRO - EPFL

francesco.mondada@epfl.ch

Abstract

This paper extends hierarchical task network (HTN) planning
with lightweight learning, considering that in robotics, actions
have a non-zero probability of failing. Our work applies to
A*-based HTN planners with lifting. We prove that the planner
finds the plan of maximal expected utility, while retaining
its lifting capability and efficient heuristic-based search. We
show how to learn the probabilities online, which allows a
robot to adapt by replanning on execution failures. The idea
behind this work is to use the HTN domain to constrain the
space of possibilities, and then to learn on the constrained
space in a way requiring few training samples, rendering the
method applicable to autonomous mobile robots.

Introduction
The hierarchical task network (HTN) planning method (Ghal-
lab, Nau, and Traverso 2004, ch. 11) has proved to be a
powerful block for building high-level robot behaviours in
various contexts, such as navigation (Belker, Hammel, and
Hertzberg 2003), activity planning (Beaudry, Kabanza, and
Michaud 2005), human-robot interaction (Alami et al. 2006),
or autonomous construction (Magnenat 2010). This planning
method allows to express knowledge and to reason about the
possible actions of the robot and their consequences on the
world. Planners store knowledge in the form of task networks,
that are recursive trees of alternative task decompositions,
including preconditions and action effects. The set of all
task networks used by a planner is called the planning do-
main. Task networks are expressive, but they must provide
a complete and totally correct world knowledge. Yet this is
hardly possible in the reality of robotics, where there might
be several ways to perform an action, some better than others
given the specificity of the particular environment in which
the robot evolves. In robotic applications, HTN planning thus
needs adaptation/learning.

Let us illustrate the limitations of basic HTN planning in
the real world with an example. Imagine a robot that must
fetch objects from a cupboard and put them on the ground
as fast as possible. There are two ways to do so: gently
putting the object down or dropping it. Dropping is faster,
and therefore preferred. But while some objects such as
balls can be dropped, others such as glasses must be handled
with care: if dropped, they will probably break and the plan
execution will fail. In this paper, we propose a way to learn

from the results of action executions in order to provide
the planning process with a moderate adaptability. In the
former example, our method will make the planner gently
put down glasses after a few failed drops. If the glasses are
in fact made of plastic and can be dropped safely, the same
planning domain will let the robot prefer this faster way. The
behavioural difference solely results from the experimental
interaction with the environment.

The contribution of this paper is thus the integration of
a lightweight form of learning into HTN planning, suitable
for real-time use by mobile robots. This learning process
operates in the relatively small space of possible actions
and therefore does not require a large experimental corpus.
This is possible because the HTN planning domain already
heavily constrains the space of possible action sequences.
Note that action success rate might depend on the context (the
previously executed actions), but this contextual relationship
is known a priori and can be encoded by hand. The main
difference with most of the works integrating learning into
planning is that these employ Markov decision process (MDP)
and link probabilities to states. In naive MDP formulations,
the size of the state space is proportional to the Herbrand base
of the planning problem, which grows exponentially with the
number of objects considered (Schulz 2002). As discussed
in the next section, this size remains significant despite the
various ways to reduce it that have recently been discussed
in the literature (see for instance Meneguzzi et al. 2011). On
the contrary, the method we propose in this paper maintains
probabilities on actions, not on states. Therefore, it can take
advantage of high-level information on the action success
rate, using only a small number of trials. This allows the
developer of the planning domain to write all possible ways
to perform a task and to let the robot explore at run time which
actions are the most suited for its particular environment.

Related work
Our work is not the first attempt at integrating learning into
HTN planning. In this section, we briefly review related work
and discuss how it compares to ours.

Li, Kambhampati, and Yoon (2009) define a HTN scheme
in which probabilities are associated with task decomposi-
tions. In contrast, we are more interested in adding prob-
ability of success to basic actions, because for robotic ap-
plications this is the point where the plan might fail. Note

that the work of Li et al. focuses on learning the planning
domain from plan traces, while we concentrate on improving
the adaptability of hand-crafted domains.

In the field of autonomous mental development (AMD), the
work of Mugan and Kuipers (2011) aims at learning high-
level states and actions in continuous environments. While
this developmental system has many layers, at the planning
level it associates success rates to actions, and chooses the
plan with the best chance of success considering these rates.
Therefore, albeit formulated in a different context and miss-
ing a formal proof of optimality, this work is the closest to
ours regarding high-level hypotheses.

Morisset and Ghallab (2008) present a robot that learns
from experience in a similar way to our method. However,
these authors maintain separate control states linked to the
HTN skills hierarchy through a MDP, that is the object of
learning. In contrast, our method attaches probabilities of
success to contextualized actions and considers these to be
independent.

Meneguzzi et al. (2011) propose to construct a MDP from
a hand-crafted HTN, and then solve the MDP. Similarly to
our work, this allows to consider error rates in action execu-
tions. However, in that work the MDP operates in a grounded
space, while our approach allows the planner to work in the
lifted space (Russell et al., Sect. 9.2, p. 275), reducing di-
mensionality by considering classes of objects rather than
instances. In the experiment presented in Meneguzzi et al.,
the number of MDP states seems to be proportional to the
logarithm of the Herbrand base of the planning problem. But,
the MDP still holds about 85 states for a Herbrand base of
100, which corresponds to a very small domain. Furthermore,
the lack of details on the experimental scenario prevents a
complete complexity analysis. The MDP approach also re-
quires a transformation phase, which can be long. Therefore
we believe that, when applicable, our approach proposes a
better solution in terms of simplicity and efficiency.

Starting from considerations similar to our work, Parr and
Russell (1997) propose the concept of hierarchical abstract
machines to introduce a HTN-style hierarchy to MDP and re-
inforcement learning. These authors show huge performance
improvements compared to flat MDP. But the method cumu-
lates the disadvantages of operating on grounded states and
being less expressive than the HTN formalism. In the same
direction, Kuter and Nau (2005) have incorporated HTN-style
search strategies to MDP planning. The idea of planning on
a MDP is very common and representative of the field of
planning under uncertainty, where hierarchy is exploited to
reduce the search space. However, the MDP forces the use
of grounded predicates and states (C. Boutilier and Hanks
1999).

When compared to related work, our method clearly has
the advantage of being practically implementable on a phys-
ical robot and capable of showing adaptability after only a
few tries. Besides, it does not add any complexity to the
planning algorithm, nor does it require a transformation or
preprocessing of the planning domain. The extra-work lies
at the level of defining the contextualized actions, which en-
code the a priori knowledge about the dependency between
the success rate of sequential actions in the real world.

HTN planning
We propose to extend the HTN planning framework with
probabilities and to learn these probabilities online. A HTN
planner decomposes a goal task into subtasks until it finds
a sequence of actions the robots can perform. The planner
knows the available methods and their possible decomposi-
tions. When given the goal task and the initial state of the
world, the HTN planner seeks an admissible sequence of ac-
tions. The actions can affect the state of the world; and the
planner records these alterations.

As implementation, we use Planner 9 (Magnenat, Voelkle,
and Mondada 2009), which plans partially-ordered graphs
of tasks using forward decomposition. It keeps track of each
possible decomposition in a different search node. Planner 9
starts planning with a single node containing the goal task and
the initial state of the world. When visiting a node, Planner 9
iterates through all tasks that have no predecessor. If the task
is an action, it applies this action to the current state of the
world and stores the action as part of the plan. Otherwise,
Planner 9 instantiates the different possible decompositions
of the task. This process goes on until there is no more node
left or until Planner 9 has found a node with no more task to
decompose. When Planner 9 decomposes a task, it performs
lifting: it accumulates its preconditions for delayed check.
Planner 9 assigns a value to a variable only when an action
changes a relation this variable appears in.

Planner 9 chooses the node to visit by selecting the least
expensive one using A* (Hart, Nilsson, and Raphael 1968).
In terms of cost, it adds the total cost of the decomposition
so far (path-cost in A*) and the number of remaining tasks to
be decomposed (heuristic-cost in A*). One advantage of A*
with respect to a depth-first search is to allow free recursions
in the definition of the planning domain. This is useful in
robotics because real-world problems are often expressed
in a recursive way. The execution of the plan consists in
sequentially executing the actions.

Planning under task-execution uncertainty
As the HTN algorithm decomposes a high-level task into a
sequence of low-level actions, in general there are several
admissible sequences of actions that can achieve a given
task. Planner 9 finds the shortest plan when every task is
decomposed into one or more action. This might not be
the case in general, but it is always possible to transform a
planning domain so that every task decomposes into one or
more action(s). Indeed, if a task might result in no action, we
can move this task one level up in the task hierarchy along its
preconditions. We can apply this scheme recursively until no
task could result in no action or a top-level task might result
in no action. In that case, we can remove this task from the
planning domain and check its precondition prior to calling
the planning algorithm. Thus Planner 9 will find the plan
with the shortest number of actions.

However, in the robotics context, the optimality of a plan
does not depend only on the number of actions, but also on
the actions themselves. In particular, each action has a differ-
ent utility depending on its type and on its outcome. With a
physical robot, actions might fail, and different actions have

different failure rates. Consequently, we are not only inter-
ested in finding an admissible sequence of actions in the HTN
sense, but we also want to find a plan whose execution holds
a high chance of success. To this end we take into account
the expected probability of success of a plan. Real world
considerations suggest to limit the maximum probability of
success of any action to be strictly smaller than 100 %. For
instance, the robot consumes energy, and from time to time
needs recharging, which may prevent it from completing
its plan. We also have to acknowledge that the robot is a
physical device which wears down and will eventually break.
Moreover, HTN planning assumes a stationary world, where
nothing changes beside the robot: this is not true in reality,
and the longer the execution lasts, the more probable it is
that a change occurs. With success probabilities of actions
less than 100 %, the usefulness of a plan implicitely depends
on its length, and therefore, on the duration of its execution.
Technically speaking, and because of the way A* does search,
implementing these real-world considerations also prevents
the HTN algorithm from expanding infinite loops of recursive
tasks with actions having a 100 % success probability (the
HTN planning domain allows recursions).

To model the usefulness of a plan, we associate to each ac-
tion type a a corresponding utility u(a; r), which is a random
variable depending on the outcome r of the action type a. r is
a binary variable corresponding either to success (r = 1) or
failure (r = 0). For the utility function u, we only consider
the type of the action, not the parameters of every instance, be-
cause the parameters represent real-world objects that change
with the robot’s goal. We want Planner 9 to find the plan π
that has the maximum expected utility E [u(π)] (Schoemaker
1982). In the general case of HTN decomposition, a plan π is
a directed acyclic graph (DAG) of partially ordered actions.
However, let us first concentrate on the special case of a sin-
gle robot and consider the plan as a sequence of k actions
π = (a1, · · · , ak) = ak1 . We define the utility of a plan π to
be the product1 of the utilities of its actions:

u(π; r) =

k∏
i=1

u(ai; ri) (1)

Thus, by the definition of the mathematical expectation:

E [u(π)] =
∑

r∈{0,1}k
p(r|π)u(π; r)

=
∑
r

p(r|π)

k∏
i=1

u(ai; ri)

(2)

where p(r|π) is the probability of the sequence of possible
outcomes r = (r1, · · · , rk) for plan π.

If an action fails, the robot stops the execution of the
plan. We thus consider the utility of a failure u(a; 0) to be
0. Therefore, the product of the utility in Equation 2 is non
zero if and only if all action executions result in a success.

1If an additive framework was preferred, we could use the log
of utilities instead.

Equation 2 then becomes:

E [u(π)] = p(r = 1|π)

k∏
i=1

u(ai; ri = 1)

=

k∏
i=1

p(ri = 1|ri−11 = 1, π)︸ ︷︷ ︸
θ(ai;π)

k∏
i=1

u(ai; ri = 1)

(3)

where 1 = (1, · · · , 1). From now on, we will denote
u(ai; ri = 1) by u(ai). Without loss of generality, we can
enforce 0 < maxa u(a) ≤ 1 by a simple re-normalisation.

Equation 3 shows that the expectation of the utility of a
plan is the product of the probabilities of success of each
successive action multiplied by the product of the utility
of each action. In all generality, the probability θ(a;π) of
successfully executing an action a in some plan π only de-
pends on some of the previous actions of π performed by
the robot2. We call these the dependency list ∆(a) of a;
and define a contextualized action ρ = (a,∆(a)). Through
their dependency list, actions fulfill a Markov property:
θ(ai;π) = p(ri = 1|ri−11 = 1, π) = p(ri = 1|ai,∆(ai)) =
p(ri = 1|ρi) = θ(ρi). Therefore a unique parameter θ(ρ)
is attached to every contextualized action ρ and represents
its probability of success. The possible dependency lists are
known a priori from domain knowledge, and can be used by
the developer to build the Markov dependency graph, that
is, to specify all possible ρ. In robotics, we expect the set of
ρ to be relatively small, and clearly much smaller than the
Herbrand base of the planning problem.

As explained in the introduction of this section, HTN do-
main can be transformed so that every task is decomposed
into one or more actions. In this domain, we can use the
expected utility of a partial plan, E

[
u(ai1)

]
, to guide the A*

search (Hart, Nilsson, and Raphael 1968) of Planner 9 so that
it always finds the plan that has the largest expected utility:

Theorem 1. Using − logE
[
u(ai1)

]
as the path cost for a

partial plan containing i actions and −n log θ̂ as the heuris-
tic cost, where n is the number of remaining tasks to be
decomposed, Planner 9 finds the plan that has the largest
expected utility.

where θ̂ = maxρ θ(ρ), which shall be strictly less than 1
since never-ending success does not happen in reality, as
previously pointed out.

Proof. A* is optimal if the heuristic function, in this case
−n log θ̂, is admissible, that is, if this function never overes-
timates the distance to the goal. Let us consider a node with
a partial plan ai1 and n remaining tasks to be decomposed. If
Planner 9 can decompose this node into a plan π, the latter
will have at least i+ n actions, as every task is decomposed
into one or more actions. Let us consider that this plan π has

2In practice, it is even often independent from all other actions.

k actions, with k ≥ i+ n; its expected utility is:

E [u(π)] = E
[
u(ai1)

]
E
[
u(ai+ni+1)

]︸ ︷︷ ︸
≤θ̂n

E
[
u(aki+n+1)

]︸ ︷︷ ︸
≤1

≤ E
[
u(ai1)

]
θ̂n

(4)

(with the convention that E
[
u(aki+n+1)

]
= 1 when k =

i + n). By plugging Inequality 4 into the path cost of the
final plan, and noting that log is a monotonic function, we
see that:

− logE [u(π)] ≥ − logE
[
u(ai1)

]
+ (−n log θ̂) (5)

This inequality shows that the path cost of the completed
plan is always larger than the path cost of a node plus the
heuristic cost. The heuristic function is thus admissible, and
A* always finds the plan of minimum cost, that is, the plan
of maximum expected utility.

Adaptable HTN planning
In the previous section, we have introduced a way to take
uncertainty into consideration within the HTN planning pro-
cess. Our method depends on knowing the probability of
successfully executing a contextualized action. If the world
is static and the properties of the elements do not change
with time, we can compute this probability based on statistics
about previous executions. However, if the world is dynamic
or if we want to estimate the probability of success online,
we can update an estimation of this probability during the
operations of the robot, which is the object of this section.

Let us suppose that the robot has executed N times a con-
textualized action ρ, at times t = (t1, · · · , tN), and that these
executions resulted in N outcomes r = (r1, · · · , rN). We
use an exponential forgetting model to estimate the proba-
bility θ(ρ) that the action ρ executed after time tN results
in a success by the following equation in which λ is a time
constant, accounting for possible changes in the world model:

θ(ρ) =

∑N
i=1 e

−λ(tN−ti)ri

(1 + ε)
∑N
i=1 e

−λ(tN−ti)
(6)

where ε is a small constant encoding that infinite success is
not possible in reality, ensuring θ̂ < 1 (see discussion in the
former section).

This equation suggests iteration over the whole history
to compute the final probability. However, it can be imple-
mented into an iterative version requiring only two param-
eters α and β such that θ(ρ) = α

β . Initially, α1 = r1 and
β1 = 1 + ε. Then, knowing αi and βi at time step i, their
values at time step i+ 1 become:

αi+1 = f · αi + ri+1

βi+1 = f · βi + 1 + ε

where f = e−λ(ti+1−ti)
(7)

The form of this learning algorithm is simple as long as we
can model the success rate of an action by a single parameter.

Relations
unary relations = {isBall, isGlass}
Actions
takeBall(o): precond: isBall(o)

takeGlass(o): precond: isGlass(o)

dropObject(o): precond: ∅

putObjectDown(o): precond: ∅
Methods
takeObjectBall(o)
task: takeObject(o)
precond: isBall(o)
subtasks: 〈takeBall(o)〉

takeObjectGlass(o)
task: takeObject(o)
precond: isGlass(o)
subtasks: 〈takeGlass(o)〉

fetchObjectCarefully(o)
task: fetchObject(o)
precond: ∅
subtasks: 〈takeObject(o), putObjectDown(o)〉

fetchObjectQuickly(o)
task: fetchObject(o)
precond: ∅
subtasks: 〈takeObject(o), dropObject(o)〉

Figure 1: Planning domain of object-fetching example.

Example
We have implemented the aforementioned algorithms in Plan-
ner 9, our open-source HTN planner3, and we also have vali-
dated the implementation with the scenario described in the
introduction. Figure 1 shows the planning domain, which is
available in Planner 9’s distribution4.

1. Fixed success rate
In order to validate the probabilistic planning and the
contextualized actions, in a first experiment we have
set the utilities and success rates as in Table 1. In
this example, dropping an object is 5 times more use-
ful than putting it down gently. However, doing so
with a glass only succeeds 10 % of times. Starting from
an initial state isBall(ball) ∧ isGlass(glass), setting
fetchObject(o) as the goal returns takeBall(ball),
dropObject(ball) with a cost of 1.82 for the ball
and takeGlass(glass), putObjectDown(glass) with
a cost of 3.43 for the glass. The alternative plan
takeGlass(glass), dropObject(glass) has a cost of 4.02
and is therefore not the best. This shows that Planner 9 suc-
cessfully takes the probability of success into account when
planning.

3source code: https://gitorious.org/planner9, revision used for the
results in this article: b4409ed9, 2011-12-07

4domain in: problems/robot-proba2.hpp, experiment 1 in
programs/simple-proba.cpp: testContextualizedAction, ex-
periment 2 in programs/simple-proba.cpp: testLearning

0 20 40 60 80 100
time

es
tim

at
ed

 p
(r

 =
 1

)
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
● ● ● ● ● ● ● ● ● ●

●

● ●

●

● ● ● ● ● ●

●

● ● ● ● ● ●

●

● ● ● ●

●

●

●

● ● ●

●

● ● ●

● take ball, drop

take glass, drop

put object down

other actions

Figure 2: Simulation of learning the success rate for 100 plan-act loops. The utilities and success rates in the task-execution
simulator are set as in Table 1, and ε = 0.01 and λ = 1/10. The top marks indicate a successful action, and the bottom marks
indicate a failed action. We can see that the probability of success of dropping a glass quickly decays.

Utilities of actions

takeBall 1
takeGlass 1
dropObject 5
putObjectDown 1

Success rates of context. actions

takeBall, dropObject 0.9
takeGlass, dropObject 0.1
putObjectDown 0.8
default 0.9

Table 1: Utilities and success rates for experiment 1.

2. Learning the success rate
To validate the fact that the exponential forgetting model
provides adaptation to HTN planning, we have built a plan-
act simulation experiment. For 100 trials, Planner 9 must
plan fetchObject(o) with o being alternatively “glass”
and “ball”. Initially, Planner 9 knows the contextualized
actions but not their success rates. For every action, we
initialize the forgetting model with a = 1 and b = 2 to set
an uninformative prior of 50 % success. The utilities and
contextualized actions are like in Table 1.

Figure 2 shows the action outcomes and estimated success
rates resulting from the simulation. We see that initially,
Planner 9 tries to drop objects rather than to put them down,
because the former has a higher utility. However, in the case
of glass, this results in failures. Therefore, Planner 9 switches
to putting the glass down, which succeeds most of the times.
This experiment shows that the plan-act loop converges to
an estimation of the true rates which is sufficiently good to
always select the plan of maximum expected utility. Because
we select actions deterministically according to the mode of
the probability distribution, the process does not recover the
true success rates.

Discussion
The method we present in this paper is best suited when there
are different ways to implement a given task and conditions
specific to a particular environment affect what is the best

way. It still has some limitations, which we discuss in this
section, pointing out ways to alleviate them.

The proposed adaptation mechanism does not take the
values of the variables into account. This means that we
consider that the probability of success is independent from
the objects involved in the action. It is of importance, since
this allows the planner to reason in the lifted space, which
is much smaller than the grounded space. However, it might
be limiting when the values of the grounded variables have
a strong influence on the action execution. For such cases,
we advise to add properties through the perception stage
reflecting this variability, and then to differentiate the actions
following these properties. With such measures, our approach
is suitable to handle these cases.

Until now, we have only considered the utility of plans that
consist of a linear sequence of actions, which are typically
the case for single robots. However, our reasoning still holds
for plans that are DAG of partially ordered actions. Indeed,
the utility function does not change, neither does the con-
sideration that a failure of any action results in a 0 utility.
However, the dependency lists might become complicated
and hard to define. Yet this is a difficulty for the formulation
of the a priori knowledge, not a limitation of the proposed
algorithm.

We have defined the utility solely as a function of the
action type. However, once an action is grounded, it is often
possible to compute its utility more precisely. Equation 4
shows that as long as the utility of the grounded action is
smaller than θ̂, the heuristic function is admissible. Thus it is
possible to employ the additional information from grounded
actions, if utilities are properly defined. For example, if an
action consists in going from one location to another, the
utility of the grounded action can be the utility of the action
type, multiplied by a factor starting from 1 and decreasing
with the distance.

In general, the choice of which amount of knowledge to
hand-code in a robot and what to leave to learning is not easy.

If too much is hand-coded, the robot lacks adaptivity; but
if too much is left to learning, the robot learns too slowly
or even not at all. In the extreme case when everything is
probabilistic and subject to learning, the planning becomes
a partially observable MDP (Sridharan, Wyatt, and Dearden
2008). In this case, even modest-size problems are often
intractable with physical robots. We think that our approach
of defining the HTN domain and the dependency lists by hand
and letting the robot learn online the success rate of alterna-
tives is a good compromise for current hardware. However,
the difficulty to hand-code domain knowledge is a limiting
factor. Recent results on learning from plan traces (Zhuo et
al. 2010) or on developmental systems (Mugan and Kuipers
2011) might help with this respect, and are compatible with
the method we propose. Moreover, future developments
might shift this balance, probably in the direction of learning,
especially if robots can share the acquired knowledge with
their peers (Waibel et al. 2011). Indeed this might help to
overcome the limited amount of available training experience,
which we think is one of the factors currently limiting real-
world deployment of complex high-level learning algorithms
in robotics.

Conclusion
In this paper, we have proposed a method that adds adaptation
capabilities to robots using HTN planning. We have proved
that the planner finds the plan of maximal expected utility,
while retaining its lifting capability and efficient heuristic-
based search. Our method has been validated experimentally
through its implementation in our open-source HTN planner
and the simulation of a plan-act loop. Possible improvements
such as taking into account information about the objects of
action were also discussed.

In general, we think that the idea of using the HTN domain
to constrain the space of possibles, and then learn on the
constrained space, is interesting and might bring a new life
to the crossroad of automated planning, artificial intelligence,
machine learning, and robotics.

Acknowledgements
We thank the reviewers for their constructive comments.
We thank Ève Lasserre for proof-reading the manuscript.
This work was supported by the Swarmanoid (FP7-IST-FET
022888) and myCopter (FP7-AAT-2010-RTD-1) European
projects.

References
Alami, R.; Clodic, A.; Montreuil, V.; Sisbot, E.; and Chatila, R.
2006. Toward human-aware robot task planning. In AAAI Spring
Symp’To boldly go where no human-robot team has gone before,
39–46.
Beaudry, E.; Kabanza, F.; and Michaud, F. 2005. Planning for a mo-
bile robot to attend a conference. Advances in Artificial Intelligence
199–213.
Belker, T.; Hammel, M.; and Hertzberg, J. 2003. Learning to
optimize mobile robot navigation based on htn plans. In Robotics
and Automation, 2003. Proceedings. ICRA’03. IEEE International
Conference on, volume 3, 4136–4141. IEEE.

C. Boutilier, T. D., and Hanks, S. 1999. Decision-theoretic planning:
Structural assumptions and computational leverage. Journal of
Artificial Intelligence Research (JAIR) 11:1–94.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated Planning:
theory and practice. Morgan Kaufmann Publishers.
Hart, P.; Nilsson, N.; and Raphael, B. 1968. A formal basis for the
heuristic determination of minimum cost paths. Systems Science
and Cybernetics, IEEE Transactions on 4:100–107.
Kuter, U., and Nau, D. 2005. Using domain-configurable search
control for probabilistic planning. In Proceedings of the National
Conference on Artificial Intelligence, volume 20, 1169–1175.
Li, N.; Kambhampati, S.; and Yoon, S. 2009. Learning proba-
bilistic hierarchical task networks to capture user preferences. In
Proceedings of the 21th International Joint Conference on Artificial
Intelligence (IJCAI).
Magnenat, S.; Voelkle, M.; and Mondada, F. 2009. Planner9, a
HTN planner distributed on groups of miniature mobile robots. In
Intelligent Robotics and Applications, Proceedings of the Second
International Conference on Intelligent Robotics and Application,
volume 5928 of Lecture Notes in Computer Science, 1013–1022.
Springer.
Magnenat, S. 2010. Software integration in mobile robotics, a sci-
ence to scale up machine intelligence. Phd thesis, EPFL, Lausanne,
Switzerland.
Meneguzzi, F.; Tang, Y.; Sycara, K.; and Parsons, S. 2011. An
approach to generate MDPs using HTN representations. In IJCAI
Workshop on Decision Making in Partially Observable Uncertain
Worlds: Exploring Insights from Multiple Communities.
Morisset, B., and Ghallab, M. 2008. Learning how to combine
sensory-motor functions into a robust behavior. Artificial Intelli-
gence 172(4–5):392–412.
Mugan, J., and Kuipers, B. 2011. Autonomous learning of High-
Level states and actions in continuous environments. IEEE Trans-
actions on Autonomous Mental Development PP(99):1.
Parr, R., and Russell, S. 1997. Reinforcement learning with hier-
archies of machines. Advances in Neural Information Processing
Systems 10:1043–1049.
Russell, S.; Norvig, P.; Canny, J.; Malik, J.; and Edwards, D. 2003.
Artificial intelligence: a modern approach. Prentice hall Englewood
Cliffs, NJ. second edition.
Schoemaker, P. 1982. The expected utility model: Its variants,
purposes, evidence and limitations. Journal of Economic Literature
529–563.
Schulz, S. 2002. A comparison of different techniques for ground-
ing near-propositional cnf formulae. In Proceedings of the 15th
International FLAIRS Conference, 72–76.
Sridharan, M.; Wyatt, J.; and Dearden, R. 2008. HiPPo: Hierar-
chical POMDPs for Planning Information Processing and Sensing
Actions on a Robot. In International Conference on Automated
Planning and Scheduling (ICAPS).
Waibel, M.; Beetz, M.; Civera, J.; D’Andrea, R.; Elfring, J.; Galvez-
Lopez, D.; Haussermann, K.; Janssen, R.; Montiel, J.; Perzylo, A.;
Schiessle, B.; Tenorth, M.; Zweigle, O.; and van de Molengraft, R.
2011. Roboearth. Robotics Automation Magazine, IEEE 18(2):69–
82.
Zhuo, H. H.; Yang, Q.; Hu, D. H.; and Li, L. 2010. Learning
complex action models with quantifiers and logical implications.
Artificial Intelligence 174(18):1540–1569.

